Variational Extensions to EM and Multinomial PCA

نویسنده

  • Wray L. Buntine
چکیده

Several authors in recent years have proposed discrete analogues to principle component analysis intended to handle discrete or positive only data, for instance suited to analyzing sets of documents. Methods include non-negative matrix factorization, probabilistic latent semantic analysis, and latent Dirichlet allocation. This paperbegins with a review of the basic theory of the variational extension to the expectationmaximization algorithm, and then presents discrete component finding algorithms in that light. Experiments are conducted on both bigram word data and document bag-of-word to expose some of the subtleties of this new class of algorithms.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Automatic Derivation of the Multinomial PCA Algorithm

Machine learning has reached a point where probabilistic methods can be understood as variations, extensions, and combinations of a small set of abstract themes, e.g., as different instances of the EM algorithm, or as exponential family methods. This allows the automatic derivation of algorithms customized for different models. One interesting new model is a multinomial version of PCA which has...

متن کامل

Extensions of Saeidi's Propositions for Finding a Unique Solution of a Variational Inequality for $(u,v)$-cocoercive Mappings in Banach Spaces

Let $C$ be a nonempty closed convex subset of a real Banach space $E$, let $B: C rightarrow E $ be a nonlinear map, and let  $u, v$ be  positive numbers. In this paper, we show  that  the generalized variational inequality $V I (C, B)$ is singleton for $(u, v)$-cocoercive mappings under appropriate assumptions on Banach spaces. The main results are extensions of the Saeidi's Propositions for fi...

متن کامل

On Topic Evolution

I introduce topic evolution models for longitudinal epochs of word documents. The models employ marginally dependent latent state-space models for evolving topic proportion distributions and topicspecific word distributions; and either a logistic-normal-multinomial or a logistic-normal-Poisson model for document likelihood. These models allow posterior inference of latent topic themes over time...

متن کامل

Expectation-Propogation for the Generative Aspect Model

The generative aspect model is an extension of the multinomial model for text that allows word probabilities to vary stochastically across docu­ ments. Previous results with aspect models have been promising, but hindered by the computa­ tional difficulty of carrying out inference and learning. This paper demonstrates that the sim­ ple variational methods of Blei et a!. (200 I) can lead to inac...

متن کامل

Fast Inference for Interactive Models of Text

Probabilistic models are a useful means for analyzing large text corpora. Integrating such models with human interaction enables many new use cases. However, adding human interaction to probabilistic models requires inference algorithms which are both fast and accurate. We explore the use of Iterated Conditional Modes as a fast alternative to Gibbs sampling or variational EM. We demonstrate sup...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2002